論文執筆のアルス




 

 

S 博士から要望があったので、彼の投稿論文のさわりを手術してみました。ニューヨーク育ちだけあって英語は完璧なのですが、メッセージがストレートに読者に届かないという大きな弱点を持っています。その原因は、贅言 (ぜいげん)です。基本的には、同じ単語の繰り返しと回りくどい表現の連続で文章がジャラジャラとしたものとなり、最終的には何が言いたいのか読者には分らなくなってしまうのです。これは、ネイティヴに幾ら見せても直してくれるものではありません。要は言語 language はなく、論述 dissertation の問題だからです。参考のために、僕が普段どういうことを他人の原稿の直しでしているのか、期間限定でお見せいたします。心臓の弱い方は、ご遠慮ください。論文執筆におけるBH のアルスの極意を垣間見ることができるかと思います。

 

普段から悪文を書く人たちは、新旧の2つのヴァージョンの根本的な違いが認識できないようです。たんなる字面の変更で、少し読みやすなったとしか感じなかった人は、決定的な論述展開の次元の相違が見えない自分に気がついてください。誰だって自分の欠点を認知できないうちは、成長はありえません。S 博士のリアクションが来ましたが、案の定、「読みやすくなっていますね」という危機感のないもので、根本的な問題を把握していないようです。つまり、悪文書きは、自分のロジック展開や贅言の問題を意識できないから、悪文を書きつづけるのでしょう。この問題について、何が悪いのかを人に説明するのは難しいなと思っていたのですが、同じところをクルクル回りつつラセンを描きながら議論が進行する日本語の論述方式で欧文を書いているから、どんなに正しい言語で記述されていても、何を言っているのか分らない、やたらと繰り返しの多い冗長な悪文となる訳ですね。とくに、シンプルかつストレートを美徳とする英語での論文では、どんなに良い研究でも正しく評価されないことにもつながるので、もったいないですよ。

 

 

手術前

 

The debate on the “certitude of mathematics” of the sixteenth century has been studied in its multiple aspects, and how Alessandro Piccolomini initiated this debate is well known. This article addresses some problems concerning Piccolomini’s philosophy of mathematics which have not been sufficiently treated in the existing literature.

              Piccolomini, philosopher, humanist and mathematician of sixteenth-century Italy, published in 1547 a In Mechanicas Quaestiones Aristotelis Paraphrasis (Paraphrase on the Mechanical Questions of Aristotle, Rome, 1547; hereafter Paraphrasis), which contained as a second part a commentary on the nature of mathematics, the Commentarium de certitudine mathematicarum disciplinarum (Commentary on the Certitude of the Mathematical Disciplines, hereafter Commentarium). In it, Piccolomini denied that mathematical demonstrations were the potissima (the most powerful) type of demonstrations discussed by commentators including himself. In the first section, this article will focus on the problem of the historical background. It will examine how the cultural milieu of the sixteenth century formed the background to Piccolomini’s thoughts, and focus in particular on the complicated relationship of Piccolomini with Proclus. The rediscovery and diffusion of Proclus’ philosophy of mathematics started in the late fifteenth century. In the second section, the article considers Piccolomini’s thoughts on the nature of mathematical objects. The physical concept of actio and the meaning it has in Piccolomini’s philosophy will be examined. The article will also shed light on the Medieval sources for Piccolomini’s ontology of mathematics by examining his concept of indeterminate quantity. The final section considers Piccolomini’s thoughts on mathematical demonstration, and examines the place of Piccolomini in preceding debates concerning mathematics. In the Commentarium, Piccolomini was considering several different problems in the philosophy of mathematics, each of which had their histories. The multiplicity of problems has to do with the fact that, in the Aristotelian commentary tradition, there were different ways to regard science and scientific knowledge. The different problems were tackled upon at the same time in Piccolomini’s treatise, which is one of the reasons why the Commentarium is difficult to analyze.

           Existing studies have thrown light on the reactions which Piccolomini’s treatise caused in the following decades; they have also considered Piccolomini’s role in the birth of the new mathematical science in the seventeenth century. Section 1 of this article looks in the other direction and considers the historical situation in which Piccolomini’s thoughts were shaped. This article also presupposes the thesis by Charles Schmitt concerning the multiplicity of Aristotelianisms in the Renaissance. The schema of an “Aristotelianism” opposing a “Platonism” will not be resorted to, the main reason being that, in Piccolomini’s case, the debate was mainly between Aristotelian commentators, past as well as contemporary; even Proclus’ influence does not seem to have been too important. The article attempts to shed light on the different topics constituting Piccolomini’s argument, and to better understand what each of them signified in the Latin Aristotelian tradition. The article will mainly analyze the Commentarium, but the Paraphrasis as well as later texts by Piccolomini will also be referred to.

手術後

 

The debate on the “certitude of mathematics” of the sixteenth century has been studied in its multiple aspects, and how Alessandro Piccolomini initiated this debate is well known. The philosopher, humanist and mathematician of Renaissance Padua published a treatise entitled In Mechanicas Quaestiones Aristotelis Paraphrasis (Paraphrase on the Mechanical Questions of Aristotle, Rome, 1547; hereafter Paraphrasis). Its second part, Commentarium de certitudine mathematicarum disciplinarum (Commentary on the Certitude of the Mathematical Disciplines, hereafter Commentarium), deals with the nature of mathematics through diverse problems, each of which has its history. Their multiplicity comes from different ways to perceive science and scientific knowledge in the Aristotelian commentary tradition. These problems are discussed in the single treatise, and it renders difficult to analyze this text. Past studies have concentrated on the reactions it caused in the following decades and have examined Piccolomini’s role in the birth of the new mathematical science in the seventeenth century. But if we wish to understand the historical context in which his ideas were shaped, we should take into account Charles Schmitt’s thesis on the multiplicity of Renaissance Aristotelianisms. Moreover, the traditional schematization of an “Aristotelianism” opposing a “Platonism” will not be resorted to, because, in Piccolomini, the debate was mainly between Aristotelian commentators, past as well as contemporary; even Proclus’ influence should not be exaggerated, although his philosophy of mathematics, rediscovered in the late fifteenth century, was largely diffused in the middle of the sixteenth century.

In his Commentarium, Piccolomini argues that mathematical demonstrations are not most powerful” (potissima) of those which were traditionally upheld. The present study first analyzes the historical background of this argument. How did the cultural context of the sixteenth century affect Piccolomini’s ideas? I shall examine in particular his real relationship with Proclus’ mathematical thought. The second section reconsiders the Paduan’s discussions on the nature of mathematical objects, especially the physical concept of actio. I shall also shed light on medieval sources for his ontology of mathematics, by examining his notion of indeterminate quantity. The final section tackles Piccolomini’s ideas on mathematical demonstration, their place in relation to his predecessors’ debates. By analyzing these different elements of his argument, I shall show what each of them signified in the Latin Aristotelian tradition.

 

 

 

 

 

 

 

 

 

 

 

 



 

  やはり、例があった方が分かりやすいでしょう。まず、以下が原文のサンプルで、黄色でマークした部分は本来なら避けるべき言葉の繰り返しです。また下線を引いたところは1文そのものの繰り返しです。欧語で生きている人間は、これを見ただけで辟易して、どんなに良い研究でも、これ以上は読みたくないと思うのが落ちでしょう。

 

The question to be considered in this section is: were there any particular historical circumstances behind Piccolomini’s philosophy of mathematics? It seems that Piccolomini’s philosophy was one of the fruits of the trends in thought and science of the early sixteenth century. These currents prepared Piccolomini’s encounter with Proclus’ philosophy of mathematics; the latter played an important role in the publication of Piccolomini’s Commentarium.

Piccolomini’sPraefatio” to his Commentarium gives some information on the origins of Piccolomini’s ideas on mathematics. Piccolomini first delineates the essence of his philosophy of mathematics, and expresses his intention to refute a broadly accepted view among Aristotelian commentators, namely that mathematical demonstrations are potissimae, or “the most powerful,” demonstrations. He admits that in his youth he followed the prevalent view, but later, when he started studying seriously mathematics, he entertained doubts about it. The following part recounts how Piccolomini arrived at his new interpretation. First of all, he says, his ideas changed when he actually started mathematical studies. Talking about the opinion of Latin commentators, Piccolomini says:

 

これに対して僕の提案は、以下のようになります。既に最初の2文を入れ替えるという、少し上のレヴェルの技術を使っていますが、冗長さを軽減するために意味のない挿入や、自信なさそうな推測の表現などを切り落として、最初は8を要しているものが5で済むことになります。ここで単純に「読みやすくなっていますね」程度の印象しか持たない人は、悪文書きの可能性が大です。2つの文章の大きな違いは、ロジックの展開です。ヴァージョン1ではそれぞれの文につながりがあるようでいて、実は明解ではありません。同じところをクルクルと回りながらラセンを描いて進むという印象を与えても仕方ありません。それに対して、ヴァージョン2ではそれぞれの文意のつながりが直線的に展開していることに気がついて欲しいのです。

 

Piccolomini’s philosophy of mathematics is a fruit of the currents in thought and science of the early sixteenth century. But what are particular historical circumstances which lie behind its genesis? It has been said that his encounter with Proclus’ mathematical thought played an important role in the composition of his Commentarium. In this connection, its Praefatio gives some information on the origins of his ideas. Delineating the essence of his philosophy of mathematics, Piccolomini expresses his intention to refute a widely accepted view among Aristotelian commentators that mathematical demonstrations are “most powerful” (potissimae). He admits that in his youth he followed this prevalent view, but later, when he started studying seriously mathematics, he entertained doubts about it. He recounts how he arrived at his new interpretation:

 

 

 

2008. 2. 25

  昨日の S 博士の問題の続きですが、日本語の文章をつづるに適したクルクルしたスパイラル式の思考回路を持つ人間の目には、クルクルと回る文章が真っすぐになっているように見えるのではないか?と思えるようになりました。昨日の日記の記述に近いことをメールに書いて送ったのですが、それに対するリアクションを見る限り、本人は問題の存在することは漸くのところ認識できても、問題が何なのか一向に分からない様子です。この状況では、いくら頑張っても自力での向上は望めません。さてさて、どうすれば良いでしょうか?

 

 

2008. 2. 29

  ここのところ連載している論述のアルスは、各方面で好評を頂いているようです。今回は、論考の冒頭につけられている要約のケースを見てみましょう。例によって、黄色マーカーが付けられた部分が、本来なら避けるべき同じ単語の繰り返しが行われている場所です。これら全てを排除することはもちろん難しいのですが、一目で分かる通り、原文はかなりヒドイものです。また、下線を付けた部分は表現が重すぎる箇所、あるいは、あえて言う必要のない(当たり前のことを言っている) 箇所です。

 

Alessandro Piccolomini is known for having started the debate on the “certitude of mathematics”. This article studies some problems which have not been hitherto addressed concerning Piccolomini’s philosophy of mathematics. By distinguishing the different problems considered in his commentary on the nature of mathematics, and by comparing his thoughts with other Medieval and Renaissance commentators, the article aims to shed more light on the philosophical problems which Piccolomini tackled. After considering the circumstances surrounding Piccolomini’s encounter with Proclus’ philosophy of mathematics, the article examines Piccolomini’s conception of mathematical objects, paying special attention to how Piccolomini absorbed and used Medieval theories concerning quantity. In turning to the nature of mathematical demonstrations, the article distinguishes three problems treated by Piccolomini: the certitude, the causal nature, and the potissima status of mathematical demonstrations. For each of these topics, Piccolomini’s position will be compared with other Medieval and Renaissance discussions.

 

僕の提案は、以下のようになります。今回は要約ということもあって、ロジックの流れには大きな問題はありません。単純に繰返しを避けて、まどろっこしい表現をシンプルストレートにする工夫が入れてあります。

 

Alessandro Piccolomini started the debate on the “certitude of mathematics”. By distinguishing the different topics discussed in his treatise on the nature of mathematics, and by comparing his ideas with other medieval and Renaissance commentators, the present article aims to shed a fresh light on Piccolomini’s philosophy. It first examines the circumstances surrounding his encounter with Proclus’ mathematical treatise, then his conception of mathematical objects, paying special attention to his reactions to medieval theories on quantity. In turning to the question of mathematical demonstrations, it examines three main problems: their certitude, their causal nature and their potissima status. For each of them, Piccolomini’s position will be compared with his forerunners’ discussions.

 

 

2008. 3. 3

  大好評な論述のアルスの続きを書きます。僕自身を含め、世の論文執筆者は、読者は行間を読んでくれない、という大前提を肝に銘じるべきでしょう。結局のところ、文字にしてあることしか人には伝わらないのです。しかも、マズイ書き方をしてあったら、書いてあること自体なかなか伝わるものではありません。悪文書きの人は、その辺のことが全く意識できないのでしょう。だから、読者に優しい書き方をしないといけないのです。

 

 

2008. 3. 7

   各方面で大好評をいただいている論述のアルスの続きです。前回、堂々めぐり的なスパイラルな思考をもつ人間には、贅言と繰り返しでクルクル回りながら進む悪文が、筋の通った真っすぐな論述に見えるのではないか?という大胆な仮説を提示しましたが、考えてみれば不思議なものです。そういう悪文書きでも、普段は英語の論文などを通して真っすぐな論述を読むことには慣れているはずなのです。で、何の疑問も抱かないのです。直線的なロジックで進む論述をする欧語で生きる人々にとって、多くの日本人の書くスパイラルな悪文は、少し読んだだけで目が回って辟易するという前に、まず単純に意味不明ということが多いのに対して、日本人は真っすぐなものを読んでも、クルクル回るものを読んでも、違いそのものが分からないのです。こういうことは、どうして可能になるのでしょうか?

 

 

 

トップに戻る